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ABSTRACT

A new description of temperature-dependent, rate phenomena was deduced to
describe developmental time and ovipositional data for the McDaniel spider mite,
Tetranychus mcdanieli McGregor. The derived equation accounted for asymmetry
about optimum temperature and was of particular utility for description of systems
operating at or above optimum temperatures. Ovipositional and developmental rate
functions were used in a temperature-driven, discrete-time, simulation model describing
McDaniel spider mite population dynamics. Temperature dependence of the instantane-
ous population growth rate was determined by fitting the derived rate-temperature
function to data generated through simulation at various fixed temperatures. The
functional relationship of important population parameters to temperature provided
the mechanism for inclusion of phenological effects on mite populations in a synoptic
apple pest management model.

Two derived functions were fit to several published rate-temperature data sets.
Adequacy of description (as indicated by R*® values) indicated general applicability
of both functions for description of temperature-controlled, biological processes.
Further, it was concluded that the singular perturbation method of matched asymptotes
has potentially wide application in ecology, and an Appendix detailing the application

of this method is included.

The McDaniel spider mite, Tetranychus mcdanieli
McGregor, has been recognized as a significant pest
on apples in Washington state since 1951, and has
probably been a problem since apples were first pro-
duced in the interior valleys of the state. The criti-
cal importance of temperature to development of
mite populations has long been recognized, and a
good deal of experimental effort has been expended
determining temperature dependence of life history
parameters for this species (Tanigoshi et al. 1975).
We felt methods available for analytic description
of temperature-dependent, life history parameters
were inadequate. The day-degree concept with its
inherent linearity is particularly invalid for mite pop-
ulations. Tanigoshi et al. (1975) used least squares
polynomials to describe temperature dependent life
history parameters in T. mcdanieli, but behavior of
these curves was questionable at temperatures near
or above optimum. An inadequate description was
particularly noticeable for temperatures above opti-
mum but within a range common under field condi-
tions during July and August. Application of em-
pirical methods for describing high temperature re-
sponse was further complicated by the difficulty in
obtaining reliable experimental data at these tempera-
tures when the system was undergoing rapid change.
Other empirical functions (Parker 1974, Messenger
and Flitters 1958), with well defined behavior
throughout an interval, have been successfully used
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to describe temperature-dependent, metabolic proc-
esses. However, for many simulation purposes, a
function described by biologically meaningful (meas-
urable) parameters is superior to a purely empirical
form. This is particularly true for initial stages of
mathematical modeling when the actual data base
may be weak. In these circumstances response func-
tions must be based primarily on an experienced re-
searcher’s intuition and it may, in fact, be impossible
to use a purely empirical form. Deductive equations
(at least in part) have been proposed by Pradhan
(1946) and Stinner et al. (1974). Both equations
are unsatisfactory due to symmetry about optimum
temperature, a situation which is obviously not true
for the considered mite population (Tanigoshi et al.
1975). Therefore, a method for analytic expression
of temperature-dependent, physiological phenomena
was considered in some detail.

Development of Temperature Curve

The effect of temperature on life history param-
eters, initially developmental time, is broken into 2
phases (Fig. 1). Phase I, characterized by a mono-
tone increasing slope, is used to describe behavior
from some base to optimum temperature. Phase II
occurs once optimum temperature has been exceeded
and is characterized by a precipitous decline in rate
until the lethal, maximum temperature is reached.
When viewed in this manner, the problem is analo-
gous to certain “boundary layer” problems in the
physical sciences, and the method of matched asymp-
totic expansions is used to obtain a solution (Lin and
Segel 1974, Appendix). Briefly, the technique is to
find separate but related solutions describing the be-
havior during Phase I and Phase II. From these 2
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Fic. 1.—Model for developmental rate as a function
of temperature.

solutions, if certain conditions are met, a single ana-
lytic solution is obtained describing the entire range
of behavior.

Following an argument advanced by Pradhan
(1946) relating rate of development to the rate of
enzyme-catalyzed, biochemical reactions, an outer
(low temperature) solution can be derived of the
form,

do(T) = ¢ exp(pT) (1)

where ¢ is developmental rate at some base tempera-
ture above developmental threshold; p is the rate in-
crease to optimum temperature; and T is degrees
above base temperature (T),).

The exact nature of physiological processes which
lead to mortality at high temperatures are not well
understood. Mortality may be due to heat denaturi-
zation of one or more critical enzymes, or to dissoci-
ation of the epicuticle, monomolecular wax layer,
and subsequent desiccation (Beament 1958). There-
fore, the solution during Phase II is motivated by the
empirical response during high temperature decline.
To facilitate description in this interval the scaled
variable r is introduced (see Appendix for motiva-
tion behind choice of 7)

7= (Ty—T) /2T, (2)

where Ty is the lethal, maximum temperature in
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degrees above Ty; and AT is the width of the high
temperature boundary layer. The function

di(r) = C, [1 —exp(—7)] (3)
is used to describe behavior during Phase II. This

resulted in 2 scales, = inside the high temperature
boundary layer and T outside. At this point we have,

d(T) d (T) = ¥ exp(pT) for T in Phase I
d;(7) = C,[1 — exp(—r)] for T in Phase 11

(4)

which leaves 2 unresolved matters: namely, what
value should be chosen for the constant C,, and how
can we develop an expression uniformly valid over
the entire interval [T,,T,;) from these outer and in-
ner solutions? The answer to the 1st question is pro-
vided by the intermediate limit technique of matching
which resulted in the condition (see Appendix)
d)(Ty) = lim  di(r) =>C, = ¢ exp(sTy).

T

(5)

Then a uniformly-valid, asymptotic expansion over
the interval [T,,Ty;) was obtained by substituting the
result of (5) into (3), adding the 2 solutions of (4)
together, and subtracting their common limit as de-
termined by (5). This uniformly valid additive com-
posite is given by

d(T) = ¢[exp(rT) — exp(pTn — 7)]. (6)

Equation (6) has several desirable characteristics.
It is analytic over the entire range of temperatures
and is described by parameters which are measurable
with biological (or at least partially biological) inter-
pretation. ¢ is a directly measurable rate of the tem-
perature-dependent, physiological process at some
base temperature; p can be interpreted as a composite
Qqo value for critical enzyme-catalyzed, biochemical
reactions; Ty is a thermal maximum (temperature at
which life processes can no longer be maintained for
prolonged periods of time); and AT is the tempera-
ture range over which ‘thermal breakdown’ becomes
the overriding influence.

In addition to analytic and biological acceptability,
the function provided a good description of rate-
temperature data, as shown by the least squares fit to
developmental rate for protonymph (Fig. 2a). To
account for nonlinearity in the transformation from
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Fic. 2.—a, Least squares fit of equation (6) to developmental rate for 7.

medanieli protonymph (data from

Tanigoshi et al. 1975a); b. Comparison of least squares polynomial to equation (6); ¢, Comparison of the modi-

fied sigmoid function to equation (6).
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Table 1.—Residual sums of squares for least
squares fit for 3rd degree polynomial, modified
sigmoid function and equation (6).

Residual sums of squares

i Modified Equation
Life stage Polynomial sigmoid" (6)
Larvae®* 1016 2351 .0470
Protonymph* 0845 0997 0519
Deutonymph* 0415 0976 0370

t Data from Tanigoshi et al. 1975,
b Stinner et al. 1974,

developmental period to rate of development, data
points in Fig. 2a were computed as

. n
d=1/exp[ 2
i=1
where d is average rate of development; D;’s are ob-
served developmental times; and n is sample size.
Non-linear least squares fits were made for active,
immature life stages using Harwell Library Subrou-
tine VAOSA (Powell 1968). Initial estimates of Ty
and AT were visually made from the data; ¢ was
initialized to the observed developmental rate at the
base temperature; and p was initially estimated by
solving (1) using v and the observed maximum d,
(note that the independent variable is measured in
degrees above T,,).
A comparison was made of the derived equation to
a 3rd degree polynomial (degree determined by F
test at 5% significance level) and a modified sigmoid
function (Stinner et al. 1974). Since all 3 functions
are defined by 4 parameters, a vaild measure of good-
ness of fit is obtained by comparing magnitudes of
the respective Residual Sums of Squares. As shown
in Table 1, an improved fit was obtained in all cases
by use of equation (6). Comparison to the fitted
polynomial is shown in Fig. 2b. Both functions pro-
vide an adequate fit for for mid-range temperatures,
but the polynomial exhibits erratic behavior at both
extremes. A similar comparison to the modified sig-
moid function is shown in Fig. 2c. Both functions
describe the data quite well at low and intermediate
temperatures, however, the artificially imposed sym-
metry of the modified sigmoid function about opti-

In(D;)/ n],

1.60 (R) 1.05

1.06

0.53 0.35
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mum temperature results in an inadequate description
above thermal optimum. Additionally, equation (6)
is analytic for all temperatures in the interval
[TD’TM)-

The mathematical technique of matched asymp-
totic expansions used to derive (6) has wide eco-
logical application. Conceptual formulation is often
facilitated by decomposition of complex ecological
phenomena into 2 (or more) distinct phases. Matched
asymptotes, in effect, provide an analytic solution
which is bounded by the separate curves describing
individual phases. For example, in an attempt to
demonstrate general application, equation (6) was
fit to several published data sets. When these func-
tions, were plotted it became apparent that response
in the low-to-mid-temperature range (Phase I) was
more sigmoid than could be accounted for by (6).
Motivated by this sigmoid behavior (see Appendix),
an outer expansion satisfying

d,(T) = d(p — vd) ; d(0) =y (7)

was used for Phase I description. Solving (7) re-
sulted in

do(T) = o[l + kexp(—pT)]™
for e = p/v,and k = (a—y¢) /¢ . (8)

Using the inner expansion given by (3), with the
matching condition
d,(Ty) = 1im d;(7)

T > 0

=>C,=d,(Ty) = «a, (9)

we obtain the uniformally-valid, additive composite
given by

d = o[l + k exp(—pT)]™" — exp(—7)}. (10)

Equations (6) and (10} were fit to diverse, published
data sets, including developmental rate for several
insect species, oviposition for the McDaniel spider
mite, and rate of sucrose oxidation for 2 bacterial
species. Results of these least square fits are listed
in Table 2, and three typical, comparative plots are
shown in Fig.3. The extremely good fit, particularly
when using equation (10), indicates broad applica-
tion for description of temperature-related, biological
processes.

It should be noted that equation (7) is not entirely

20.6

29.3 38. 26.0 35.0

Fic. 3.—Comparative plot of exponential outer expansion (solid line) to sigmoid outer expansion (broken line)

for: a. Rate of egg development for Drosophila melanogaster.

b. Rate of egg development for Dacus dorsalis.

c. Rate of egg development for Lucilia sericata. Dimension of dependent variable is proportion development com-

pleted per day.
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Table 2.—Comparative R® values for equation (6) with exponential outer expansion [(R®):] and for
equation (10) with sigmoid outer expansion [(R®).].

No. of
Data source data points (R3), (R®):
Dacus dorsalis Hendel, rate of egg development® 20 .9279 9930
Drosophila melanogaster Meigen, rate of egg development® 23 9649 9967
D. melanogaster, rate of pupal development® 16 9332 9453
Phormia regina (Meigen), rate of egg development? 11 9795 9957
Cochliomyia macellaria (Fab.), rate of egg development? 10 9858 .9999
Lucilia (=Phaenicia) sericata (Meigen), rate of egg development* 10 9965 .9993
Musca domestica L., rate of egg development? 11 9864 .9997
Ephestia (=Anagasta) kuehniella (Zeller), rate of egg development® 14 9741 9873
Bacillus psychrophilus, rate of sucrose oxidation® 6 .9984 9999
Bacillus thuringiensis, rate of sucrose oxidation® 9 9134 9759
T. mcdanieli, total oviposition® 7 .9243 .9401

a Messenger and Flitters, 1958.
b Powsner, 1935.

¢ Ludwig and Cable, 1933.

4 Melvin, 1934,

without biological interpretation since p can be inter-
preted exactly as in (1) and vy may be considered a
temperature denaturization effect. Equation (10)
can be viewed as an extension of (6) to allow high
temperature decline due to both desiccation and en-
zyme denaturization. Parameter initialization for
non-linear least squares estimates given in Table 2
were made by setting

py=12p a.
v =g/ dy fordy =maximum b.
observed
rate
(Ta)z = (Ty), c. (1)
(aT), = .5(4T), d.

k = (pg /v — ) /¢y Where o = ¢y e.

where the subscripts 1 and 2 refer to equations (6)
and (10) respectively. A detailed description of the
mathematical motivation behind application of
matched asymptotes to our temperature problem is
given in the Appendix.

Application to Population Simulation

Since equation (6) describes the rate of develop-
ment, the proportion of the i-th life stage completed
during a time interval [t,,t;] is given by

tp
JEIO)T
ty (12)

where d, is obtained from equation (6) or (10) with
parameters describing developmental rate for the jth
life stage, and temperature (T) is a function of time
(t). By assuming (a) the effect of temperature on
development is additive (Tanigoshi et al. 1976), and
(b) a constant temperature during some small inter-
val of time (At) equation (12) is approximated by

n
3 d(T))at
=1

fornat=t,—t,.
(13)

An example of protonymph developmental rate over

¢ Youte, 1936.
f Stokes and Larkin, 1968.
g Tanigoshi, et al., 1975.

a 12-h temperature profile (At = 1 hr.) is shown in
Fig. 4. To determine the effect of temperature on the
population dynamics of T. mcdanieli, it was neces-
sary to incorporate the temperature-rate equation
into a synoptic model describing a complete life his-
tory. This was accomplished by formulating a dis-
crete time simulation model using equation (6) to
update each life stage and computing oviposition
from the curve shown in Fig. 5. The maximum popu-
lation growth rate possible at a given temperature
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Fic. 4.—Twelve hour temperature profile and corre-
sponding rate of development for T. mcdanieli proto-
nymph. Life stage is completed when the sum of the
areas (A,) equals 1.
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Fic. 5.—Equation (6) fit to total oviposition for T.
medanieli.

r,,(T) was estimated from the discrete time model
by computing the population growth rate r(T) at
each time step and allowing enough time for conver-
gence of r(T) to r,(T). A least squares fit of (6) to
these generated data points resulted in (see Fig. 6)

r, = .048 [exp(.103 T)
— exp{2.89 — (28.04 — T)/2.71}]. (14)

Solving for the 1st derivative of (14) set to zero (see
Appendix) resulted in an estimated optimum tem-
perature of 33.24 (r, (T = T,) = .38).

Through the same reasoning that led to equations
(12) and (13), equation (14) can be used to predict
population response over any given temperature re-
gime. The derived equation provides a valuable pest
management tool for predicting the likelihood of mite
population outbreaks, and more importantly provides
a sound basis for inclusion of phenological effects on
mite populations in a synoptic apple production
model.
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Fi6. 6.—Instantaneous population growth rate as a
function of temperature for T. mcdanieli.
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Appendix

Knowlege of uniformly valid, asymptotic solutions
that result from application of singular perturbation
techniques to prototype equations may substantially
aid researchers in many fields. One of the most
basic problems in the natural sciences is the deduc-
tion of an optimal, closed form representation of
a curve which provides the best fit for a data set.
It is the aim of this Appendix to demonstrate such
singular perturbation results for a particular model
equation and then to show how these results were
used to determine an appropriate analytic expression
for temperature-dependent, biological processes.
Equations A.1-A.13 establish the form of the inner
and outer expansions, including the choice of scaling
factor for the independent variable inside the bound-
ary layer. Necessary conditions that these expan-
sions must satisfy for matching are given in equa-
tions A.14-A.18. Parenthetically stated these con-
ditions imply that as one passes from the inner to
the outer solution, or from the outer solution to the
inner, both solutions must approach the same limit.
Nondimensional quantities of the general solution
are related to specific temperature parameters in
A.23-A.26. The equation for finding thermal opti-
mum is given in A.27. And finally, equations A.28-
A.32 are deductively used to expand initial results
to include a more general description.

Consider the following boundary value problem
fory = y(x;¢);

B Y L hy=0,0<x<1, 0<e<<1;
d<*  dx

€

(A.la)
y(0,e) =0, y(l;e) =1, (A.1b)

where all quantities in (A.1) are assumed to be non-
dimensionalized and b, is a positive constant. We
wish to determine the lowest order approximation
for the solution y(x;) , which is uniformly vahid
in x for « small. Although we could accomplish this
by solving the problem exactly and then examining
the asymptotic behavior of that solution for e small,
it is more advantageous to employ the following
procedural technique that does not depend upon
explicitly knowing the exact solution.

We first assume y, dy/dx , d’y/dx® are of O(1)
as e » 0 for x ¢ I where I is an interval flanking
x = 1 (later in this Appendix we demonstrate what
happens if 1 were chosen such that it flanks (x = 0).
Then, since we are seeking a one-term approxima-
tion, we look for a solution to (A.1) of the form

Y(x;¢) = yo(x) + O(e) where yo™(x)

=0(1) forx¢lase—> 0;n=0,1,and 2. (A.2)
Substituting (A.2) into (A.la) and that boundary
condition of (A.1b) evaluated at x = 1 and neglect-
ing all terms of O(e) , we obtain the following 1st
order differential equation and boundary condition
for yo(x) :

Yo' +boYo =0, yo(1) =1. (A.3)
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Since the differential equation satisfied by y is only
first order, it would be impossible for y, to satisfy
a boundary condition at x = 1 and one at x = 0
simultaneously. This is a characteristic of singular
perturbation problems. Solving (A.3) we obtain
Yo(x) = exp[—bo(x—1)], (A.4)
which is usually referred to as the lowest order term
of the outer expansion for y(x; ¢) .
We now wish to rescale our variables so that for
x £ I' , and interval flanking x = O , our new de-
pendent variable and all derivatives of it with re-

spect to our new independent variable will be of
O(1) (Segel 1972) as ¢ » 0 . That is we define
§=x/8(e) , Y(£3) =y(xse) (A.5)
such that where § = O(l) ase—> 0, Y ,dY/d¢,
and d&*Y/d# are of 0(1) but » 0 as ¢ » 0 .
Since we wish £ = O(1) as ¢« = 0 for x about 0,
this implies lim 8(e) — O . Substitution of (A.5)
e=> 0
into (A.la) and that boundary condition of (A.1b),
evaluated at x = 0, yields the following problem

for Y(¢9)
d’Y 3(e) ] dY 8 (e)
— + — Y
g [eildE-l_bo[e]
=0,Y(0) =0, (A.6)

upon division of the original transformed differential
equation by ¢/&. Due to the restrictions on d"Y/d¢",
n = 0,1, and 2, imposed above, it is necessary that
neither of the terms in brackets in (A.6) goes to «
as ¢ » 0, and that only one of them can go to O.
Thus without loss of generality we need only examine
the following two cases:

M) _, o PO _

€ €

either 1.

(A.7a,b)
For (A.7a), 5(¢) = e which implies 8°(e)/e =
¢, while for (A.7b) 8(e) = ¢° which implies () /e
= 1/¢% Since 1/¢®* > « as ¢ > O this latter case
must be rejected; hence we select 3(e) = e
Therefore we consider

E=x/e, Y(&e) = y(eke), (A.8)
and (A.6) becomes
dY dY
+——+eboY =0, Y(0;) =0.
PR
(A9)

Since Y, dY/d¢, &°Y/d$ = O(1) where ¢ = O(1)
[ie. — x = O(e)] as € = 0, we are justified in look-
ing for a solution in this region of the form
Y(&e) =Yo(8) + O(e) where Y™ (¢)
=0(l) as ¢e=20; n=0,1,and2.
(A.10)

Substituting (A.10) into (A.9) and proceeding as
before, we obtain the following problem for Y:

Yo'+ Yo =0,Ye(0) =0. (A1)
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Solving (A.11) we obtain
Yo(£) = Coll—exp(—£)1, (A.12)

where C, is a constant still to be determined. This
is usually referred to as the lowest order term of
the inner expansion or boundary layer of y(xe).
Thus we now have

Yo(x) = explbo(x—1)}]

for x&I suchthat x = O(1)
y(X;e) ~ as ¢~ 0.
Yo(x/€) =Cpll—exp(—x/e)]
for xéI' suchthat x = O(e)
(A13)

We wish to find C,, and shall do this by means of the
intermediate limit technique of matching the inner
and outer asymptotic expansions.

Consider (A.13) in conjunction with Fig. A.l.
Recall that y4(x) is a valid asymptotic expansion for
x = O(1) while Yo(x/¢€) is a valid expension for x =
O(8(e)) = O(e) as e > 0. We introduce a 9(e) as
depicted in Fig. A.1 such that

e< O0(e) <1 lim ©(e)
e=> 0

e/6(e) =0.

where

= lim

e>0
We now define a variable ¢ = x/6(¢) and consider an
interval I” such that for x ¢ I, ¢ = O(1) but not
zero as € = 0 [i.e. — X = O(O(e))]. Since these x’s
are intermediate between x = O(1) and x = O(e),
one postulates in the limit as ¢ » 0 that both the
inner and outer expansions are valid in this region
and hence equal. That is.

(A.14)

lim [YO(X) ]
e=0(1) X = ¢6(e)

e—=>
[Yo(x/e)

= lim
e=> 0

e=0(1)

X = 06(e) :| )
(A.15)

Now upon use of (A.14), (A.15) yields the one-
term matching condition

yo(0) = 1lim Y,(8) .
£> e (A.16)
Applying (A.16) to (A.13) we obtain
Co = exp(by) , (A7)
and therefore,
Yo(X) = exp[—bgo(x—1)]
for x =0(1)
y(Xe) ~ as e=> 0.
Yo(x/e) = exp(bg) [1—exp(—x/¢)]
for x = O(¢)
(A.18)

The outer expansion yo(x) is a good approxima-
tion to the exact solution except near x = 0, or in
the boundary layer, where the inner expansion
Y, (x/¢) is the correct approximation. We can con-
struct an asymptotic representation that is uniformly
valid in the interval x£[0,1] by adding Y,(x/¢) to
Vo(x) and then subtracting their common part as
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Fi6. A.1.—A graphical depiction of the intervals I, I', and I” as well as the scale factors d(¢) = e and
©6(e) for the case of the boundary layer located at x = 0.
determined by the matching condition (A.16). This with the implicit matching condition
additive composite, which will be denoted by — 1
y.“”(X;¢), has the general form, do(Ty) = Tl_imoo di(r) - (A.25)

Yo' = yo(x) + Yo(x/e) — yo(0) ;
or, for this case,

Vo' (x:¢) = exp[—bg(x—1)]
+ exp(bg) [1—exp(—Xx/¢€)] — exp(by)
= exp(bg)[exp(—box) — exp(—x/e)].
(A.20)
Finally we examine what would have occurred had
we assumed that the boundary layer were located at
x = 1. Then we would have found that

(A.19)

Yo(X) =0 forx €l

suchthat 0¢1
y{xie) ~ e=> 0,
Yo(n) = A+ (1—A)exp(n)
where 7= (1—x)/e
for x in the boundary layer
(A.21)
where A must be selected such that
Yo(1) = lim  Yg(n) .
n=> o (A.22)

This will require that we choose A so that it satisfies
lim [A+(1-A)exp(n)] =0~
7> oo
A = 0 and 1 simultaneously,

which is, of course, impossible. It is a characteristic
of the technique of matched asymptotic expansions
that if one assumes the boundary layer to be located
at the wrong end of the interval, it is impossible to
fulfill the matching condition.

It remains only to relate these results to the prob-
lem at hand. Toward this end we introduce the fol-
lowing association between the nondimensional quan-
tities of this Appendix and the relevant dimensional
ones of the rate-temperature function:

€= AT/TM s bo = PT)[ , X = l—T/TM
and  y(x) =d(T)/v.

Then (A.18) transforms into

do(T) =y exp(eT)
for T in Phasel
d(T) ~4di(7) =y exp(sTy)[1 — exp(—7)]
where 7= (Ty—T)/AT
for T in PhaseIl,
(A.24)

(A.23)

Hence using (A.19) directly or transforming (A.20)
with the aid of (A.23), we obtain the uniformly valid
approximation

d(T) = ylexp(pT) — exp{pTy— (Ty—T)/AT}]
for T&[0,Ty]. (A.26)

It is now possible to determine a relationship between
the optimum temperature Ty, and the parameters of
(A.23), namely

To = Tyllte In(eby) / (1—ebg)l. (A.27)

We further pose the question of whether such a
procedure as that illustrated in this Appendix can be
used to provide new biological insights. In particular
(A.1) has dimensional form

d'(T) = pd(T) + ATA"(T) ,
d(0) = ¢, d(Ty) =0,  (A.28)

which has the physical interpretation that the change
of rate with temperature is composed of a term (pd)
due to an effect on critical biochemical reactions and
another (ATd”) due to desiccation. If we modify
(A.28) by including a nonlinear effect for enzyme
heat denaturization, we obtain

d(T) = d(T)[p—vd(T)] + ATA"(t) ,

d(0) =v, d(Ty) =0, (A29)
where v > 0 is a denaturization constant. This
would yield a modified outer solution satisfying

do'(T) = do(T)[e—vdo(T)], da(0) =¥ ;
(A.30)

or solving (A.30),
do(T) = a [1+k exp(—pT)]" where o« =p/v

and k= oy .

(A.31)

The inner solution would remain the same and hence
we could form a modified uniformly-valid, additive
composite given by
d(T) = o{[1+k exp(—pT)]" ,
— [1+k exp(—sTy)"exp(—7) }
= o{[1+k exp(—pT)]™* — exp(—7)}
for = (T,—T)AT,

which should prove useful for modeling temperature-

(A.32)
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dependent, rate phenomena which are sigmoid rather
than exponential in the low temperature region.

Note that we have made the approximation in
(A.32) that do(Ty)= e, which is valid provided
the line T = Ty, intersects the sigmoid curve, d =
do(T), at a point in the T — d plane having an
ordinate virtually identical in value to «, the horizon-
tal asymptote of that sigmoid curve.
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